Year 7 Chemistry Curriculum – 2022-23						
	Autumn Term		Spring Term		Summer Term	
	1	2	1	2	1	2
Key	Matter		Reactions		Earth	
Concepts						
National	Particle Mo el	Pure an	Aci s an	Metals an	%arths	&eyon the
Curriculum	* The properties	!mpure	Al#alis	\$on-Metals	Structure	Atmosphere
Knowledge	of the diferent	su" stances	* +e-ning acids	* The 2eriodic	* The	' 4ur ' un as a
&	states of matter	* The concept of	and al. alis in		composition of	star other stars
Understandi	(solid li! uid and	a pure su%stance	terms of	* The properties	the Earth	in our gala*y
ng	gas" in terms of	^) I^tures	neutralisation	of metals and	1 Ine structure	other gala^ies
	the particle	Including		nonsmetals	of the Earth	Ine seasons
	model including	dissoising	for moscuring		and the	and the Earthos
	* Changes of	+11 USION III		reactions as the	formation of	diferent times of
	state in terms of	narticle model	actuityval. allinty	of atoms	ignoous	voar in diforent
	the narticle	* ' imple	* Chemical	* Representing	sedimentary and	hemispheres
	model#	technil ues for	reactions as the	chemical	metamorphic	' The light year
	* Conser\$ation of	separating	rearrangement	reactions using		as a unit of
	material and of	mi*tures.	of atoms	el uations	* 2roperties of	astronomical
	mass and	-Itration	* Representing	* The chemical	ceramics#	distance
	re\$ersi%ility in	e\$aporation	chemical	properties of		* Use and deri\$e
	melting	distillation and	reactions using	metal and non3		simple el uations
	free&ing	chromatography	e! uations	metal o*ides		and carry out
	e\$aporation	* The		with respect to		appropriate
	su%limation	identi-cation of		acidity		calculations
	condensation	pure su%stances#		* Reactions of		* Underta. e
	dissol\$ing			acids with metals		%asic data
	* ' imilarities and			to produce a salt		analysis
	diferences			plus hydrogen		including simple
	including density			* Reactions of		statistical
	diferences			acids with al. alis		techni! ues#
	%etween solids			to produce a salt		
	li! uids and gases			plus water		
	* (rownian					
	motion in gases					

	*+ifusion in					
	lil uids and dases					
	dri\$en %v					
	diferences in					
	concentration					
	* The diference					
	%etween					
	chemical and					
	physical changes					
6ssessment	' K7) 2	End of Term 0	' K7) 288	End of Term 0	' K7) 288	End of 9ear
	(' outhmoor Key	Unit ' ummati\$e	Teacher	Unit ' ummati\$e	Teacher	'ummati\$e88
	7nformati\$e	6ssessment8	6ssessment88	6ssessment88	6ssessment	6ssessment
) ar. ing 20int for) atter8	6cids and 61. alis	Reactions	Earth	
	each unit of wor.	8	8	8	8	
	co\$ered"8			8		
	' eparating			8		
) i*tures					
	8					
: hy this;	6 %asic	2upils ha\$e prior	6cids and 61. alis	This learning	>rom K' = pupils	This topic lin. s to
: hy now;	understanding of	. nowledge of	is taught at this	module is at this	will already . now	K' = as pupils
	the particle	solutions from	point as pupils	point as it ta. es	fossils are found	were taught
	model is the	K' =# This will %e	now . now all	concepts from	in roc. s# This	a%out Earth and
	heart of all	%uilt on ena%ling	su%stances are	each of the	unit is taught	' pace# This now
	%ranches of	pupils to e*plain	made up of	pre\$ious	later in the year	triangulates
	chemistry which	how separation	particles %ut an	modules i#e	as pupils needed	ma. ing ties with
	is why it is the	techni! ues wor. #	understanding of	particles	to pre\$iously	the pre\$ious
	-rst module to	2ure and 7mpure	neutralisation	solutions and	learn a%out	topic of Earths
	%e taught in year	su%stances is	has to %e	neutralisation	mi*tures in 2ure	' tructure and
	< chemistry# This	taught early in	addressed %efore	and sews them	and 7mpure	the 2article
	must %e studied	year < as it	pupils can %egin	together while	' u%stances and) odel as pupils
	at this point as	de\$elops aspects	to study the	still opening	the concept of	will disco\$er that
	the module 2ure	of the 2article) etals and Non3	opportunities for	acids %efore	the outer planets
	and 7mpure) odel module	metals topic	continual	chemical	are made from
	'u%stances	such as	when diferent	learning	weathering in	gas whereas the
	in\$ol\$es the	su%stances are	types of	in su%se! uent	the roc. cycle	inner planets are
	mo\$ement of	made from	neutralisation	modules# >or	could %e	made from roc.
	particles# 7t	particles and	reactions are	e*ample in	understood# This	li. e the Earth#
	references lin. s	these can %e a	in\$estigated#	Types of	unit will e*plore	This unit %uilds a

	out and suggest improvements in their work.