		1		1		r

3ith Oract onal	boun/ary lor an	an/ tan o0 514 &)	in"ersely	e#uaton o0 the 0orm	proo0185118& 2
po3ers 188 61	ine#uality on a	an/, 1 165A 1, 8 2	proportonal to M is	xNIbxIcby	Create a chain ol
	graph 1: 8 115;11)	+isualise the	e#ui"alent to C is	Oactorising 1)6:8;	logical steps to
\$+	2 Construct an/	∕iagonals o0 a	proportonal to 17M	:: 2 ! ol"e a	create a proo0 in a
9se the	sha/e a graph to	cuboi/2+isualise	11: : 2 ;:62	#ua/ratce#uaton	geometrical
Ounctonality of a	sho3 a linear	triangle that can be	\$nterpret e#uatons	ol the lorm axl I bx	situaton 2\$/ent0y
scient Bc calculator	ine#uality o0 the	create/ by .oining	that /escribe /irect	I c by lactorising 1)6	3hen a circle
3hen calculatng	0orm y H ax I bA y J	any three "ertces	proporton 11: :2;	: 8; : : 2 ! ol"e a	theorem can be
3ith roots an/	ax IblyKax	o0 a three	: 6 2 \$nterpret	#ua/ratce#uaton	use/ to help sol"e a
po3ers N&& , , 2	lboryLaxlb	/imensional shape	e#uatons that	by rearranging an/	geometrical
Choose the	1:8115;11)2	2 9se Pythagoras	/escribe in"erse	Oactorising 1)6:8;	problem 185418&
re#uire/ minimum	Construct an/	theorem to Bn/ the	proporton 11: :2;	:: 2\$/ent0y 3hen a	221;228 2 9se a
an/ maximum	sha/e a graph to	length a gi"en	: 6 2 ! ol"e problems	#ua/ratce#uaton	combinaton o0
"alues 3hen	sho3 a linear	/iagonal in a cuboi/	3hich inclu/e	cannot be sol"e/ by	0no3n an//eri"e/
sol"ing a problem	ine#uality in t3o	216 2 9se	Bn/ing the	Oactorising 1:1:8;::	lacts to sol"e a
in"ol"ing upper	"ariables state/	Pythagoras	multplier in a	2 alle connections	geometrical
an/lo3erboun/s	implicitly 1: 8 115;	theorem to Bn/	situaton in"ol"ing	bet3een graphs an/	problem 221;228
152421, 1&;1, 2	11) 2 Construct	lengths in three	/irect proport on	#ua/ratce#uatons	Pust0y solutons to
Calculate the	an/ sha/e a graph	/imensional Bgures	11: :2;:6 !ol"e	ol the lorm axl I bx	geometrical
upper an/ lo3er	to represent a set	216 2 9se	problems 3hich	l c 4 1 1, 1 1, 8;1, : 2	problems
boun/s in a giren	o0 linear	trigonometry to Bn/	inclu/e Bn/ing the	a0e connectons	
situation 152421,	ine#ualites in t3o	the angle bet3een a	multplier in a	bet3een graphs an/	
1&;1,	"ariables 1: 8 115;	line an/ a plane 218	situaton in"ol"ing	#ua/ratce#uatons	
¢	11) 2 Fin/ the set		in"erse proport on	ol the lorm axl I bx	
9 2 9n/erstan/an/	o0 integer	On (anatan (the	11: :2;:6	l c 4 /x l e 1, 1 1, 8;	
use notation for	coor/inates that	9n/erstan/ the		1, : 2 Fin/	
recurring /ecimals	are solut ons to a	limitations ou	-ecognise <plota< td=""><td>approximate</td><td></td></plota<>	approximate	
18. 2& 2 Interpret	set o0 ine#ualites		interpret= graphs o0	solutons to	
a calculator /isplay	in t3o "ariables1: 8	551;552 2 9se a	exponental	#ua/ratce#uatons	
in"ol"ing a	115;11) 9se set	sample to muer	UUNCTONS 1: & 1)1;	using a graph 1, 1	
recurring /ecimal 2	notaton to	propertes ou a	1)12 Plot graphs of	1, 8;1, : 2 De/uce	
Con"ert a fracton	represent the	1 population 1) ZH 10,	non;stan/ar/	roots o0 #ua/ratc	
to a recurring	solut on set to an	001,0022 HUS	vunctions 2	Ounctons	

	0% O		
1, & &, ; &8 2 !et up	%O		
a gro3th or /ecay	9n/erstan/ the		
problem&, ;&8	meaning o0 a		
! ol"e problems	#ua/ratc se#uence		
in"ol"ing gro3th	215 126 2 Fin/ the		
an/ /ecay &, ;&8	term in x 2 lor a		
%/	#ua/ratc se#uence		
A// <subtracta< td=""><td>215 126 2 Fin/ the</td><td></td><td></td></subtracta<>	215 126 2 Fin/ the		
multplyA/i"i/e=	nth term o0 a		
algebraic 0ractons	se#uence o0 the		
211):;,22	0orm ax2 215 126 2		
! impli0y an	Fin/ the nth term		
algebraic 0ract on			
211a):;,22			
\$/ent0y 3hen it is			
necessary to Bn/			
t3o linear			
expressions to			
lactorise a			
#ua/ratc			
expression			
1)641:2)::.&2			
Expan/ the			
pro/uct ol t3o			
binomials in "ol" ing			
sur/s 216b 6) 2			
Factorise an			
expression			
in"ol"ing the			
/iDerence o0 t3o			
s#uares 1)641: 24			
1)8)8;); 2			

#ua/ratc			

Pupils use mathematcs as an integral part of classroom act "ites@Rhey represent their 3or0 3ith ob.ects or pictures an//iscuss it@Rhey recognise an/ use a simple pa>ern or relatonship@	Pupils /e"elop their o3n strategies lor sol"ing problems an/ use these strategies both in 3or0ing 3ithin mathematcs an/ in applying mathematcs to practcal contextsl Shen sol"ing problemsl 3ith or 3ithout \$CRI they chec0 their results are reasonable by consi/ering the contextl Rhey loo0 lor pa>erns an/ relatonshipsl present ng inlormat on an/ results in a clear an/ organise/ 3ayl using \$CR appropriatelyl Rhey search lor a solut on by trying out i/eas of their o3nl	Pupils carry out substant al tas0s an/ sol"e #uite complex problems by in/epen/ently an/ systemat cally brea0ing them /o3n into

	mathematcal explanaton an/ experimental e"i/encel
Pupils try /iDerent approaches an/ Bn/ 3ays ol o"ercoming /iT cultes that arise 3hen they are sol"ing problemsl Rhey are beginning to organise their 3or0 an/ chec0 resultsl Pupils /iscuss their mathematcal 3or0 an/ are beginning to explain their thin0ingl Rhey use	

> 3?, = & O@ D& *(+,&1 =(,D OB 8 = С *& 8 Ţ ! 8 ! 3? *(+,&1 =(,D O@ =&,.A1 O&1& E = + F 2= 2O ! ; ! L (,, +(* (E, ! " > ! 8 3? 1 0 0 @ ; C ; < ? & 16(* @

Develop fluency

consolidate their numerical and mathematical capability from key stage 2 and extend their understanding of the number system and place value to include decimals, fractions, powers and roots

3

select and use appropriate calculation strategies to solve increasingly complex problems

use algebra to generalise the structure of arithmetic, including to formulate mathematical relationships

substitute values in expressions, rearrange and simplify expressions, and solve equations

move freely between different numerical, algebraic, graphical and diagrammatic representations [for example, equivalent fractions, fractions and decimals, and equations and graphs]

develop algebraic and graphical fluency, including understanding linear and simple quadratic functions use language and properties precisely to analyse numbers, algebraic expressions, 2-Dand -D shapes, probability and statistics!

Reason mathematically

extend their understanding of the number system" make connections between number relationships, and their algebraic and graphical representations

extend and formalise their knowledge of ratio and proportion in working with measures and geometry, and in formulating proportional relations algebraically

	identify variables and express relations between variables algebraically and graphically							
	make and test con#ectures about patterns and relationships" look for proofs or counter- examples							
	begin to reason deductively in geometry, number and algebra, including using geometrical constructions							
	interpret when the structure of a numerical problem requires additive, multiplicative or proportional reasoning							
	explore what can and cannot be inferred in statistical and probabilistic settings, and begin to express their arguments formally!							
	Solve problems develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems							
	develop their use of formal mathematical knowledge to interpret and solve problems, including in financial mathematics							
	begin to model situations mathematically and express the results using a range of formal mathematical representations							
	select appropriate concepts, methods and techniques to apply to unfamiliar and non- routine problems!							
	! 8 ! 8 8 ; ! !							
"	8 ! 31 ! ; ! G							
	! !3 ∕ E \$< \$\$. <							
	C !A"							
	· · ·							
	. ? / E \$ @							
	Cultural Capital							

1
1 !
(!!</th
#tracurricular
= ! 8
" 8
; 8